DESER LOCUST
CITIZEN REPORTING

Driving Response through
Digital Technology & Citizen Reporting

AGRIFIN CASE STUDY: NOVEMBER 2020
CONTENTS

Introduction

Context

Citizen Reporting: Desert Locusts and Lessons Learned

Framework for Applying Citizen Reporting

Appendix
Mercy Corps’ AgriFin programming (MCAF) represents USD 35 million in innovation funding from the MasterCard Foundation, Bill and Melinda Gates Foundation and the Swiss Development Corporation to support development, testing and scale of digitally-enabled services for smallholder farmers.

- Our objective is to develop sustainable services that increase farmer income and productivity by 50%, with 50% outreach to women
- MCAF works as an innovation partner with private sector scale partners and such as banks, mobile network operators, agribusinesses, as well as technology innovators and governments committed to serving smallholders at scale
- We help our partners develop, test and scale bundles of digitally-enabled financial and non-financial services supporting partnership development between market actors that leverage their strengths
- We combine MCAF team expertise with strategic subsidy to jointly implement iterative, fail-fast engagements with partners on a cost-share basis, sharing public learnings to drive market ecosystem growth
- Since 2015, we have completed more than 200 engagements with over 120 partners across Africa
- With the onset of the Desert Locust in East Africa, the Skoll Foundation funded AgriFin’s first emergency response work leveraging digital tools
- With this support, AgriFin now reaches more than 8 million smallholders
Introduction

ABOUT DALBERG

OUR MISSION

Our mission is to bring the best of private sector strategy to address global development challenges

WHO WE ARE

We are entrepreneurs and innovators, designers and creative problem solvers, thinkers and doers, idealists and pragmatists from everywhere, at home anywhere

WHAT WE DO

- Offer an innovative mix of advisory, investment, research and design services
- Offer an approach that combines rigorous analytical capabilities with deep knowledge and networks across emerging and frontier markets

WHY WE DO IT

Our shared mission is a positive and optimistic one; we work to uncover, build fuel and sustain the potential in people everywhere
Introduction

THIS CASE STUDY MAPS THE DESERT LOCUST RESPONSE AND DRAWS BEST PRACTICES TO INFORM FUTURE CITIZEN REPORTING

Context

- In 2020 the Horn of Africa suffered its worst desert locust outbreak in 70 years which – coinciding with COVID-19 – posed a serious threat to food security in the region.
- AgriFin mobilized and coordinated a consortium of partners to develop citizen reporting tools through digital technology to fill critical gaps in field level data to inform the locust response.

Objectives & Approach

- This case study is intended for potential stakeholders of future citizen reporting efforts and seeks to achieve three main objectives:
 1. Map the desert locust reporting ecosystem
 2. Identify best practices in citizen reporting
 3. Develop recommendations for future citizen reporting efforts
- We focused on citizen reporting of desert locusts but also drew upon wider applications to derive broader best practices.

Key partners

- The response was founded on a consortium of key partners:
 - MERCY CORPS
 - AGRIFIN
 - Agricultural Transformation Agency
 - Ethiopian
 - ATA
 - PlantVillage
 - turn
 - CABI
 - The Mediae Company
 - Open Data for Development

Research Overview

- Over four weeks, Dalberg used a combination of research methods:
 - We conducted 32 virtual interviews with stakeholders across the desert locust ecosystem and with broader experience of citizen reporting models (see Appendix)
 - We conducted desk-based research and analyzed available data.
EXECUTIVE SUMMARY (1/3)

Introduction

Context

- In 2020 the Horn of Africa suffered its **worst desert locust outbreak in 70 years**, posing a **serious threat to local food security and livelihoods** – once locusts have hit it is too late to prevent damage with each sq km of locusts able to eat as much in a day as 35,000 people.

- In January, **locusts moved into Northern Kenya** from the Horn of Africa (1), **moving to the North Western region** (2) and **further into Ethiopia** in July 2020 (3), whilst they are **expected to return to Kenya** from November onwards (4).

- Response institutions lacked adequate **historical locust data on the Horn of Africa** region, thus there were **significant data blind spots** in the most affected regions of the Desert Locust invasion.

- Farmers in the region also **lacked adequate information** on Desert Locusts, how it affected their crops and livestock and how to respond to the devastating crisis.

- The **traditional locust reporting model** could **not generate data of the scale and breadth required** and was impaired by the **logistical constraints of COVID-19**, limiting its ability to provide a target response.
Citizen Reporting: Desert Locusts and Lessons Learned

- Citizen reporting crowdsources information through technology to fill data gaps and inform agricultural responses; it has previously been applied in different contexts, such as wheat rust, elections and bird migration.
- The coordination of the response included:
 - Securing government buy-in and approval for the citizen reporting model
 - Mobilizing a consortium of partners with the capabilities required to deliver the response
 - Deploying complementary communication channels to target different audiences and maximize outreach
 - Continuously aligning stakeholders to ensure the clear designation of roles and responsibilities
- The citizen reporting model comprised several stages of data communication across nine technology channels:
 - The education of farmers about the locust threat and citizen reporting system available to them
 - The reporting of locust sightings through technology channels serving different levels of digital literacy
 - The validation of reported data to ensure accuracy and scientific robustness
 - The processing of validated data and integration with wider data to predict locust swarm activity
 - The dissemination of expected locust swarm activity to inform education and response efforts

Coordination: Authorization + Mobilization + Technology + Alignment

<table>
<thead>
<tr>
<th>Education</th>
<th>Reporting</th>
<th>Validation</th>
<th>Processing</th>
<th>Dissemination</th>
<th>Response</th>
</tr>
</thead>
</table>

PlantVillage

CORPS AGRIFIN Dalberg
Introduction

EXECUTIVE SUMMARY (3/3)

Framework for Applying Citizen Reporting

1. Lay the foundations
 - Identify the enablers and blockers of a potential citizen reporting model in advance
 - Pro-actively develop plans to address these so that a citizen reporting model can be rapidly mobilized as and when it is required

2. Remain flexible
 - No one size fits all – Understand the variables that can differ across citizen reporting contexts
 - Remain agile and able to adapt to the specific context as it evolves

3. Deploy the model
 - Apply a structured approach and general best practices, which can be tailored to the specific context, at each stage of the citizen reporting model

Three steps can be followed in applying a strategic approach to deploying citizen reporting models in the future:

- Lay the foundations by identifying enablers and blockers
- Remain flexible to variables that can differ by context
- Deploy the model with a structured approach and general best practices

No one size fits all – Understand the variables that can differ across citizen reporting contexts.
CONTENTS

Introduction

Context

Citizen Reporting: Desert Locusts and Lessons Learned

Framework for Applying Citizen Reporting

Appendix
Context

AGRICULTURE IS KEY TO SUB-SAHARAN AFRICA’S ECONOMY AND IS VULNERABLE TO DAMAGE FROM DESERT LOCUSTS

Agriculture’s contribution to GDP in Sub-Saharan Africa (2019)¹, %

[Map of Sub-Saharan Africa with color coding for GDP contribution]

Agriculture is central to Sub-Saharan Africa’s economy, with smallholder farmers playing a central role

- Agriculture contributes 15% of GDP
- Employs >50% of the population
 - c. 80% of the agriculture output is contributed by c. 33m of Small Holder Farmers (SHF)
 - 40-50% of SHF are women
- Forms the bedrock of food security and nutrition
 - 75% and 80% of the population in Kenya and Ethiopia respectively are dependent on agriculture for their livelihoods
- Production of diverse and nutrient dense foods increases resilience against malnutrition and improves health outcomes
- Desert locusts pose a significant threat to food security and once they have hit crops it is too late to prevent damage, with each sq km of locusts able to eat as much in a day as 35,000 people (and some swarms measuring >2,000 sq km)

THE HORN OF AFRICA SUFFERED ITS WORST DESERT LOCUST OUTBREAK IN 70 YEARS ALONGSIDE THE OUTBREAK OF COVID-19

In 2020 Kenya and Ethiopia were hit by the worst desert locust outbreak in 70 years, which coincided with the outbreak of COVID-19:

1. December
 Locusts appear in northern Kenya from the Horn of Africa and hopper bands begin to swarm

2. March
 COVID-19 is declared a global pandemic and travel restrictions are imposed between Kenyan counties

3. July - September
 Locusts are present in North-West Kenya

4. July
 Locusts migrate to Ethiopia

November onwards...
Locusts are expected to return to Kenya from Ethiopia and Somalia

The desert locust outbreak – twinned with the logistical challenges imposed by COVID-19 – posed an imminent threat to food security in East Africa
THE TRADITIONAL REPORTING MODEL WAS UNABLE TO RAPIDLY SCALE DATA AMIDST A HISTORIC LOCUST SWARM AND COVID-19

Context

A traditional response was led by extension services tracking locust swarms (to direct aerial spraying of pesticides), which deployed alone would have suffered:

- Narrow breadth of reporting amidst a widespread swarm
- A slow response to the high speed of the swarm’s travel (up to 150km per day)
- Difficulty in identifying hopper bands with conventionally-used satellite imagery
- Limited support from farmers who were unfamiliar with desert locusts, which had not struck in 70 years

Moreover, the traditional model of response was impaired by logistical constraints due to COVID-19, including:

- Delays in sourcing of pesticide chemicals to fight locusts from limited global supply chains
- Restrictions of movement under lockdown (although international field experts were already in the region and local field experts exempt from national travel restrictions)

A rapid, targeted and resource-efficient response to the locust swarm would not have been possible due to the limited visibility of locust activity across Kenya and Ethiopia.

A new approach was required to augment the traditional model and tackle the locust emergency.
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Context</td>
</tr>
<tr>
<td>Citizen Reporting: Desert Locusts and Lessons Learned</td>
</tr>
<tr>
<td>Framework for Applying Citizen Reporting</td>
</tr>
<tr>
<td>Appendix</td>
</tr>
</tbody>
</table>
Citizen Reporting: Desert Locusts and Lessons Learned

CITIZEN REPORTING ENABLES THE RAPID, SCALABLE AND COST-EFFECTIVE COLLECTION OF DATA FOR EMERGENCY RESPONSE

Citizen reporting crowdsources information through digital technology to generate widespread data that can inform agricultural response efforts.

Agricultural disaster response efforts can be inhibited by data blind spots, particularly in rural communities...

Citizen reporters fill the data gaps to inform a coordinated response effort...

…citizen reporting mobilizes citizens at the frontline of an event (e.g. smallholder farmers, pastoralists) and deploys digital technology to provide visibility that can inform the response effort.

“PlantVillage from one of our US Land Grants (Penn State) has shown the important role of Artificial Intelligence, cloud computing, analytics and satellite intelligence in cost-effectively fighting the Desert Locust and other threats African farmers face. Data is critical for both the current threat but future ones when they occur. You must measure and monitor digitally if you want to control.” – US Ambassador Kip Tom

1) See Appendix for further detail

Citizen reporting has been applied to many different past contexts:

- Predicting and mitigating wheat rust diseases
- Monitoring election activity and voter turnout
- Monitoring of advocacy and human rights activity
- Responding to earthquakes
- Tracking of bird migration
- Prediction of coffee yields (planned for launch January 2021)
Citizen reporting supported FAO’s pre-existing Desert Locust Information Service (FAO DLIS) – an early warning system that monitors weather and ecological conditions and locust infestations in potentially affected areas.

Citizen reporting provided additional sources of on-the-ground reporting – in addition to national field officers – which were:

I. Aggregated, validated and processed by PlantVillage
II. Transmitted in real time via satellite to National Locust Centres (NLCs) for data analysis
III. Forwarded to the Global Information System managed by FAO in Rome for analysis and forecasting

"Data reported by citizens who have been taught the basics of Desert Locust and know how to use eLocust3m can be a valuable contribution to the global system used for monitoring locusts, organising field operations, conducting control campaigns, and providing accurate and timely early warning." – Keith Cressman, FAO Senior Locust Forecasting Officer

1) Schistocerca Warning and Management System (SWARMS) is used by FAO in Rome on a daily basis to manage and analyze environmental and locust data
2) Reconnaissance and Management System of the Environment of Schistocerca (RAMSES) GIS developed for frontline countries and runs on a personal computer.
Citizen Reporting: Desert Locusts and Lessons Learned

DEsert Locust citizen reporting was formed of several stages of data collection and communication

Farmers are educated about the locust threat and citizen reporting system through public broadcast campaigns using a range of channels

Farmers and trained agronomists report locust sightings through digital channels that accommodate a range of end user technical sophistication

Data generated in the field is cleaned and verified by field experts and software to ensure accuracy and scientific robustness

Data generated through citizen reporting is aggregated and integrated with wider research to predict future breeding and movement of locusts

Insights generated are distilled into migration maps that are shared with partners and used to inform public information campaigns

Migration maps can be used to direct preventative action, such as the targeted spraying of crops with pesticides

A range of enabling bodies, channel partners and end users were mobilized and coordinated to enable data exchange across the ecosystem
Citizen Reporting: Desert Locusts and Lessons Learned

AGRIFIN AND ATA SECURED CRUCIAL GOVERNMENT BUY-IN AND APPROVAL TO ENABLE THE NEW CITIZEN REPORTING MODEL

Desert locust findings

AgriFin and ATA secured government approval for citizen reporting due to:
- Pre-existing networks that enabled access to key decision-makers
- Technology solutions that complemented FAO’s global monitoring and early warning system
- Assurances that citizen data would remain secure and not change ownership

Kenya: AgriFin leveraged its network to influence the ongoing desert locust response effort and secure government approval for the use of new technology channels to improve citizen reporting

Data integrated with FAO DLIS

Ethiopia: ATA secured direct approval from the MoA

Broader lessons learned

Key Challenges
- Influencing decision-makers in opaque bureaucratic processes
- Convincing governments of the secure use of citizen data
- Preventing slow decision-making processes from acting as bottlenecks

Best Practices
- Complement pre-existing systems already supported by the government
- Provide transparency over citizen data ownership, use and security
- Involve enabling bodies from the beginning of the process to limit delays
- Provide impact updates to sustain buy-in
A CONSORTIUM OF PARTNERS WAS MOBILIZED WITH THE CAPABILITIES REQUIRED TO DELIVER THE REPORTING MODEL (1/2)

Education
- FAO: Informs content for education
- CABI: Informs content for education
- PlantVillage: Informs content for education

Reporting
- Mediae: Educates farmers
- PlantVillage dream teams: Collect data and share directly via digital platforms

Validation
- Mediae: Verifies farmer reports

Processing
- External partners: Provide additional scientific research
- PlantVillage: Integrates reported data with external databases and RAMSES GIS system, and uses machine learning to build occurrence and forecast maps
- ATA: Verifies on-the-ground data

Dissemination
- Mediae: Shares info to farmers
- ATA: Sends info to DAs/farmers

Notes
1) AgriFin mobilized and coordinated stakeholders through consultation with enabling partners, including FAO, the Government of Kenya and Government of Ethiopia
A CONSORTIUM OF PARTNERS WAS MOBILIZED WITH THE CAPABILITIES REQUIRED TO DELIVER THE REPORTING MODEL (2/2)

AgriFin – which consulted PlantVillage in the conceptual design of the ecosystem – mobilized partners with complementary technical capabilities and domain expertise (i.e. sectoral/regional knowledge) to:

- Reach a range of disparate end users in Kenya and Ethiopia
- Remain flexible to the locust swarm and its movements (e.g. when locusts unexpectedly hit northern Kenya)

Desert locust findings

<table>
<thead>
<tr>
<th>Education</th>
<th>Reporting</th>
<th>Validation</th>
<th>Processing</th>
<th>Dissemination</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PlantVillage</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mediae/iShamba</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CABI</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAO</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full ecosystem</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Rapidly mobilizing the relevant partners if in the context of an emergency
- Planning which partners are required given the unpredictability of crises
- Mobilizing partners that provide sufficient breadth to engage disparate end users

Broader lessons learned

Key Challenges

- Determine a matchmaker with a pre-existing network of partners
- Identify required partners by segmenting end user needs from the bottom-up
- Engage partners who have established trust and authority with end users
- Remain flexible in engaging partners depending on how the crisis evolves

Best Practices

- Provides capability in Kenya
- Provides capability in Ethiopia
Citizen Reporting: Desert Locusts and Lessons Learned – Coordination – Technology

THE CONSORTIUM RAPIDLY SCALED A COMPLEMENTARY RANGE OF TECHNOLOGY CHANNELS TO MAXIMIZE OUTREACH (1/2)

End users (e.g. farmers) are educated through public information campaigns and then report locust sightings through a range of channels:

- Television
- Radio
- Training
- Facebook
- WhatsApp for Business
- Direct Call
- SMS
- IVR

Education

- Farmers
- Dream/Field teams
- Extension agents

Reporting

- Mobile
 - Direct Call
 - SMS
 - IVR
- Online
 - WhatsApp for Business
 - eLocust3m
- Crowd
 - Word of mouth
 - Facebook

Validation

- WhatsApp for Business
- eLocust3m
- Direct Call

*in remote regions

Processing

- Integration with external information from other databases e.g. NASA, ISRIC, HYSPLIT and national RAMSES GIS

- Plant Village locust tracking platform

- Weekly locust maps disseminated to citizen reporters and response efforts (e.g. spray planes)

- Data collected informs FAO global and national locust monitoring systems

Dissemination

- Governments of Kenya and Ethiopia

Disseminated locust insights used to educate citizen reporters
Citizen Reporting: Desert Locusts and Lessons Learned – Coordination – Technology

THE CONSORTIUM RAPIDLY SCALED A COMPLEMENTARY RANGE OF TECHNOLOGY CHANNELS TO MAXIMIZE OUTREACH (2/2)

<table>
<thead>
<tr>
<th>Description</th>
<th>Desert locust findings</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>WhatsApp for Business</td>
<td>Platform developed by Turn.io and managed by Mediae/iShamba and ATA</td>
<td>• Highly programmable</td>
<td>• Requires smartphone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple data formats</td>
<td>• Not intuitive to users</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Easy to scale / translate</td>
<td>• Limited awareness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td>eLocust3m</td>
<td>Locust sighting app developed by PlantVillage</td>
<td>• Records geo-location</td>
<td>• Requires smart phone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provides imagery</td>
<td>• Requires trained user</td>
</tr>
<tr>
<td>SMS</td>
<td>Short text messaging that comes with most phones</td>
<td>• Used on feature phone</td>
<td>• Lengthy verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flexibility for recipient</td>
<td>• Requires basic literacy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td>IVR</td>
<td>Automated Interactive Voice Response (IVR)</td>
<td>• Simple to use</td>
<td>• Lengthy reporting and verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Used on feature phone</td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td>TV</td>
<td>Shamba Shape Up show & 5 Ethiopian channels</td>
<td>• Wide coverage</td>
<td>• Specific scheduling times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inclusive reach</td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>National and Local radio channels</td>
<td>• Wide national coverage</td>
<td>• Specific scheduling times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inclusive reach</td>
<td></td>
</tr>
<tr>
<td>Facebook</td>
<td>Use of established Facebook groups</td>
<td>• Wide and rapid reach</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple data formats</td>
<td>• Noise from unverified sources</td>
</tr>
<tr>
<td>Call center</td>
<td>Run by iShamba following up on farmers</td>
<td>• Allows for audience targeting</td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Limited by team capacity</td>
</tr>
<tr>
<td>Training</td>
<td>In-person training of farmers</td>
<td>• Enables community capacity building</td>
<td>• Limited by team capacity</td>
</tr>
</tbody>
</table>

Key Challenges

- Varying **digital literacy** and **technology penetration** across regions
- Integrating data and closing the feedback loop across different channels
- Obtaining standard data that is geo-referenced

Best Practices

- Apply a strategic approach so that each channel has a designated purpose within the ecosystem
- Select channel based on timeliness of messaging and audience targeting
- Select channels trusted in local communities
- Use standard geo-referenced data format

Table:

<table>
<thead>
<tr>
<th>Media</th>
<th>Description</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile</td>
<td>WhatsApp for Business</td>
<td>Platform developed by Turn.io and managed by Mediae/iShamba and ATA</td>
<td>• Highly programmable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple data formats</td>
<td>• Not intuitive to users</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Easy to scale / translate</td>
<td>• Limited awareness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td>eLocust3m</td>
<td>Locust sighting app developed by PlantVillage</td>
<td>• Records geo-location</td>
<td>• Requires smart phone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provides imagery</td>
<td>• Requires trained user</td>
</tr>
<tr>
<td>SMS</td>
<td>Short text messaging that comes with most phones</td>
<td>• Used on feature phone</td>
<td>• Lengthy verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flexibility for recipient</td>
<td>• Requires basic literacy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td>IVR</td>
<td>Automated Interactive Voice Response (IVR)</td>
<td>• Simple to use</td>
<td>• Lengthy reporting and verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Used on feature phone</td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td>TV</td>
<td>Shamba Shape Up show & 5 Ethiopian channels</td>
<td>• Wide coverage</td>
<td>• Specific scheduling times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inclusive reach</td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>National and Local radio channels</td>
<td>• Wide national coverage</td>
<td>• Specific scheduling times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inclusive reach</td>
<td></td>
</tr>
<tr>
<td>Facebook</td>
<td>Use of established Facebook groups</td>
<td>• Wide and rapid reach</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple data formats</td>
<td>• Noise from unverified sources</td>
</tr>
<tr>
<td>Call center</td>
<td>Run by iShamba following up on farmers</td>
<td>• Allows for audience targeting</td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Limited by team capacity</td>
</tr>
<tr>
<td>Training</td>
<td>In-person training of farmers</td>
<td>• Enables community capacity building</td>
<td>• Limited by team capacity</td>
</tr>
</tbody>
</table>

Citizen Reporting: Desert Locusts and Lessons Learned – Coordination – Technology

- **THE CONSORTIUM RAPIDLY SCALED A COMPLEMENTARY RANGE OF TECHNOLOGY CHANNELS TO MAXIMIZE OUTREACH (2/2)**

<table>
<thead>
<tr>
<th>Description</th>
<th>Desert locust findings</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>WhatsApp for Business</td>
<td>Platform developed by Turn.io and managed by Mediae/iShamba and ATA</td>
<td>• Highly programmable</td>
<td>• Requires smartphone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple data formats</td>
<td>• Not intuitive to users</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Easy to scale / translate</td>
<td>• Limited awareness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td>eLocust3m</td>
<td>Locust sighting app developed by PlantVillage</td>
<td>• Records geo-location</td>
<td>• Requires smart phone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provides imagery</td>
<td>• Requires trained user</td>
</tr>
<tr>
<td>SMS</td>
<td>Short text messaging that comes with most phones</td>
<td>• Used on feature phone</td>
<td>• Lengthy verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flexibility for recipient</td>
<td>• Requires basic literacy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td>IVR</td>
<td>Automated Interactive Voice Response (IVR)</td>
<td>• Simple to use</td>
<td>• Lengthy reporting and verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Used on feature phone</td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td>TV</td>
<td>Shamba Shape Up show & 5 Ethiopian channels</td>
<td>• Wide coverage</td>
<td>• Specific scheduling times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inclusive reach</td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>National and Local radio channels</td>
<td>• Wide national coverage</td>
<td>• Specific scheduling times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inclusive reach</td>
<td></td>
</tr>
<tr>
<td>Facebook</td>
<td>Use of established Facebook groups</td>
<td>• Wide and rapid reach</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple data formats</td>
<td>• Noise from unverified sources</td>
</tr>
<tr>
<td>Call center</td>
<td>Run by iShamba following up on farmers</td>
<td>• Allows for audience targeting</td>
<td>• Data not standard/geo-referenced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Limited by team capacity</td>
</tr>
<tr>
<td>Training</td>
<td>In-person training of farmers</td>
<td>• Enables community capacity building</td>
<td>• Limited by team capacity</td>
</tr>
</tbody>
</table>

Key Challenges

- Varying digital literacy and technology penetration across regions
- Integrating data and closing the feedback loop across different channels
- Obtaining standard data that is geo-referenced

Best Practices

- Apply a strategic approach so that each channel has a designated purpose within the ecosystem
- Select channel based on timeliness of messaging and audience targeting
- Select channels trusted in local communities
- Use standard geo-referenced data format
STAKEHOLDERS WERE COORDINATED TO ENSURE CONTINUOUS ALIGNMENT ON ROLES, RESPONSIBILITIES AND DATA SHARING

AgriFin coordinated the ecosystem throughout the response effort to ensure:
- Partners were continuously aligned on responsibilities and response developments (e.g. through weekly partner coordination meetings)
- Visibility between ecosystem partners and end user requirements
- Continuous sharing of data between partners through a single platform

*AgriFin also engaged several additional scale partners, including:
 - Turn.io
 - ECOM
 - One Acre Fund
 - KALRO

Key Challenges
- Ensuring alignment between a range of stakeholders to avoid duplication
- Providing visibility between supply-side partners and end user requirements
- Integrating data across different partners’ platforms

Best Practices
- Hold regular partner alignment meetings
- Establish clear data sharing protocols and standards from the outset
- Appoint a dedicated full-time data manager to coordinate data sharing
- Deploy an open-source data hub that all partners can access
Citizen Reporting: Desert Locusts and Lessons Learned – Education

AWARENESS OF LOCUSTS WAS RAISED THROUGH TAILORED CONTENT CASCADED THROUGH A RANGE OF CHANNELS

Desert locust findings

Educational content was distributed to empower over 11 million farmers and address the knowledge gap on desert locusts through:

- The creation of scientifically-accurate content (e.g. how to correctly identify locusts, myths/misconceptions, reporting channels, promoting safe use of pesticides)
- The tailoring of messaging to end users across different regions and languages
- The use of multiple technology channels to accommodate different levels of digital literacy (e.g. WhatsApp vs SMS/IVR vs TV/Radio)

Key Challenges

- Potential spread of misinformation
- Varying partner channel coverage by region
- Varying literacy levels by region/end user

Best Practices

- Have well-segmented audiences and use complementary channels to reach groups
- Tailor and localize information to serve target audiences (incl. type of imagery used)
- Use selected channels to build trust within local communities
Desert locust findings

Pre-existing infrastructure and new complementary platforms were used to crowdsource sightings:

- In Kenya, farmers could report locust sightings through WhatsApp for Business, direct calls from Mediae team and SMS, which was the most preferred channel due to its trust with farmers.
- In Ethiopia, ATA leveraged its extensive network of development agents to collect information through surveys, but have seen little uptake of WhatsApp for Business.
- FAO’s eLocust3m app, which was developed by PlantVillage, was accessed through smartphones provided to trained teams that were recruited from local universities.

“In the fight against locusts we have deployed youth to carry out surveillance aided by advanced tools in the form of digital apps like the eLocust3M from PlantVillage and FAO aiding the science of forecasting of trends and movements” – PS Boga, Principal Secretary, State Department for Crop Development & Agricultural Research.

Key Challenges

- Inaccurate sightings (that are not geo-referenced) from community members.
- Trade-off between capturing maximum insights and simplicity for end users.
- Diminishing motivation to report over time, especially for negative reports.

Best Practices

- Leverage community networks and build trust to have bottom up understanding of community challenges.
- Build on existing infrastructure to be complementary rather than competitive.
- Create awareness of reporting channels through coordinated marketing.
Citizen Reporting: Desert Locusts and Lessons Learned – Validation

ACCURACY, CLARITY AND DETAILS OF REPORTED DATA WERE VERIFIED TO FACILITATE PROCESSING AND TARGETED RESPONSE

Desert locust findings

- The multi-step data validation process involved:
 I. Identifying where farmers or development agents have seen locusts
 II. Clarifying the information with farmers (from a long-list of reports through Mediae and ATA call centers) or on-the-ground verification by field scouts (from community reports) and advising farmers on how to share relevant data
 III. Plant Village and FAO conducted the final verification of locust reports (e.g. through image and geo-location data) feeding into data processing stage
- Artificial intelligence supported the verification of locust sightings by determining whether a reported image contained a locust and, if so, whether it was a hopper or adult locust
- Established networks (e.g. through eLocust3m Dream Teams) in rural and pastoralist communities supported validation processes in remote areas

‘Ground-truthing data, verifiable with an image and GPS coordinates, are critical for validating sighting reports’ – Dr Hughes, PlantVillage

Kenya
- PlantVillage
 - eLocust3m accounted for 58-96% of observations processed

Ethiopia
- Mediae
 - Direct calls from call centers to farmers sending in reports through SMS/IVR
- ATA
 - Extension agents respond to surveys and make calls to verify sightings

Key Challenges

- Logistical challenges in reaching remote areas
- SMS reports can be time consuming to validate and lack location accuracy
- Images and GPS data can only be shared with smartphone

Best Practices

- Put diagnosis power in the hands of citizen reporters
- Triangulate reports from multiple channels to support with precision
- Flexibility in movement of partners to validate on-the-ground sightings
VERIFIED DATA WAS INTEGRATED WITH EXTERNAL DATABASES TO STRENGTHEN SITUATION ANALYSIS AND FORECASTING

PlantVillage led the analytical stage of the citizen reported data through:

- Triaging different data points from validated citizen reports, historical, forecasting and satellite data
- Integration with data from other sources into current FAO DLIS situation and forecast maps

Key Challenges

- Limited negative sighting reports to support accurate predictions
- Consolidating varied data formats from multiple channels is time-consuming
- Complicated data sharing protocols across different countries

Best Practices

- Crowdsource insights from the scientific community to support effective response
- Engage a trusted data intermediary to simplify data sharing and triage
- Establish a centralized data repository to integrate multiple sources of data

Verified Citizen Data from WhatsApp

Historical Data from FAO

Satellite data and models from NASA, ISRIC and HYSPLIT

Data analysis in ArcGIS

Knowledge/Technology partner **triaging data**, managing tracking platform

Integration with **global and national** desert locust monitoring information system

PlantVillage

Specialists

Backstopping processed information with the broader scientific community

FAO
Six

Citizen Reporting: Desert Locusts and Lessons Learned – Dissemination

PROCESSED INFORMATION WAS SHARED WITH DECISION-MAKERS AND CITIZENS TO UPDATE THEM ON THE RESPONSE STATUS

Key Challenges
- No clear timelines on response times; expectation of immediate action
- There are many actors sending information to end users, sometimes resulting in duplicative efforts
- Mass response takes longer; difficult to cascade information back to each reporter

Best Practices
- Empower local youth (e.g. from local universities) to build capacity and cascade information back to local communities
- Understand the cultural contexts and preferred language for engagement
- Provide feedback and evidence of action to sustain end user motivation
- Apply a strategic approach so that each channel targets designated end users

Findings generated by Plant Village were shared with decision-makers and communication partners to forward to farmers and the public:
- Information was shared with farmers through weekly TV and Radio bulletins
- Updated maps and visuals were shared on WhatsApp and SMS platforms
- Integration with FAO SWARMS Warning and Management system in Rome, Locust Hub and national locust information systems

“This step is essential to show citizen reporters where and how the reported data is used and to communicate the benefits of sharing it” – Sarah Mackay, Producers Direct

Kenya
- WhatsApp for Business
 - SMS/IVR
 - TV /Radio

Ethiopia
- WhatsApp for Business
 - 8028 SMS Channel
 - TV and Radio

AgriFin
- Communication across key stakeholders

ATA
- Communication across key stakeholders

Cascading of information

Broader lessons learned

Citizens

Plant Village

Mercy Corps

AgriFin

Dalberg
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Context</td>
</tr>
<tr>
<td>Citizen Reporting: Desert Locusts and Lessons Learned</td>
</tr>
<tr>
<td>Framework for Applying Citizen Reporting</td>
</tr>
<tr>
<td>Appendix</td>
</tr>
</tbody>
</table>
THREE STEPS CAN BE FOLLOWED IN APPLYING A STRATEGIC APPROACH TO CITIZEN REPORTING MODELS IN THE FUTURE

1. Lay the foundations
 - Identify the enablers and blockers of a potential citizen reporting model in advance
 - Pro-actively develop plans to address these so that a citizen reporting model can be rapidly mobilized as and when it is required

2. Remain flexible
 - No one size fits all – Understand the variables that can differ across citizen reporting contexts
 - Remain agile and able to adapt to the specific context as it evolves

3. Deploy the model
 - Apply a structured approach and general best practices, which can be tailored to the specific context, at each stage of the citizen reporting model
THE RAPID DEPLOYMENT OF CITIZEN REPORTING IS CONTINGENT UPON IDENTIFYING ENABLERS AND BLOCKERS IN ADVANCE

<table>
<thead>
<tr>
<th>Potential obstacle</th>
<th>Best practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding</td>
<td>• Secure flexible funding that can be deployed as and when the potential citizen reporting model is required</td>
</tr>
<tr>
<td>Shortage of funding or resources required to deliver an adequate response</td>
<td>• Pro-actively build relationships with donors, informing them of the benefits of citizen reporting and the importance of flexible funding</td>
</tr>
<tr>
<td>Enabling bodies</td>
<td>• Identify and engage key decision-makers in advance</td>
</tr>
<tr>
<td>Refusal to authorize the citizen reporting model and/or cumbersome bureaucratic processes</td>
<td>• Provide transparency over the potential usage of data to assuage security concerns</td>
</tr>
<tr>
<td></td>
<td>• Complement systems that are already favored by decision-makers</td>
</tr>
<tr>
<td>Partners</td>
<td>• Pro-actively build a network of partners that can be pivoted according to the context as it evolves</td>
</tr>
<tr>
<td>Inability to mobilize partners with the required technical or domain expertise</td>
<td>• Identify required partners through a bottom-up segmenting of potential end user needs</td>
</tr>
<tr>
<td>Digital landscape</td>
<td>• Map the technology landscape to understand which channels can be used to access different end users and which have been proven to be most effective</td>
</tr>
<tr>
<td>Limited ability to crowdsource accurate information due to lack of digital infrastructure</td>
<td>• Develop a strategic approach so that each technology channel has a designated purpose</td>
</tr>
</tbody>
</table>

Framework for Applying Citizen Reporting – Lay the foundations
THE DESIGN OF A CITIZEN REPORTING MODEL MUST REMAIN FLEXIBLE TO VARIABLES THAT CAN DIFFER ACROSS CONTEXTS

Framework for Applying Citizen Reporting

- **Sector focus**: Citizen reporting models can be applied across different sectors (e.g. agriculture, healthcare, financial services) and so will require different domain expertise to ensure scientific robustness.

- **Geographical range**: The geographical range can have implications for the required breadth of data gathering and stakeholder engagement (e.g. cross-border response efforts pose additional challenges with enabling bodies).

- **Predictability**: The extent to which an event can be predicted can influence the level of preparedness that can be achieved (e.g. a drought can provide more visibility than an unexpected earthquake).

- **Technology environment**: The types of technology that can be deployed varies across contexts as new technologies emerge, end user sophistication evolves and penetration changes.

- **Data types**: The type of end user data required to inform a response effort can vary in sensitivity, which could in turn influence the willingness of enabling bodies to approve of data sharing.
Framework for Applying Citizen Reporting – Deploy the model

A STRUCTURED APPROACH AND GENERAL BEST PRACTICES CAN BE APPLIED AT EACH STAGE OF A CITIZEN REPORTING MODEL

<table>
<thead>
<tr>
<th>Education</th>
<th>Reporting</th>
<th>Validation</th>
<th>Processing</th>
<th>Dissemination</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Tailor and localize information to serve target audiences</td>
<td>● Leverage community networks and build trust to have bottom up understanding of community challenges</td>
<td>● Put diagnosis power in the hands of citizen reporters</td>
<td>● Crowdsource insights from the scientific community</td>
<td>● Tailor and localize information to serve target audiences</td>
<td>● Ensure linkage between citizen-reported data and response action taken to be able to demonstrate tangible impact generated</td>
</tr>
<tr>
<td>● Use selected channels that have already built trust within local communities</td>
<td>● Build on existing infrastructure to be complementary rather than competitive</td>
<td>● Triangulate reports from multiple channels to support with precision</td>
<td>● Engage a trusted data intermediary to simplify data sharing and triage</td>
<td>● Empower local youth to build capacity and cascade information back to local communities</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Maintain flexibility in movement of partners to validate on-the-ground sightings</td>
<td>● Establish a centralized data repository to integrate multiple sources of data</td>
<td>● Provide feedback and evidence of action to sustain end user motivation</td>
<td></td>
</tr>
</tbody>
</table>

Stakeholders should be coordinated across the ecosystem by:

- **Securing and sustaining government buy-in** throughout the process and providing regular impact updates
- Holding regular partner coordination meetings to continuously align on role, responsibilities and end user needs
- Establishing **clear data sharing protocols and standards** across different partners and channels
WHAT IS NEXT FOR CITIZEN REPORTING IN AGRICULTURE AND CLIMATE-RELATED EMERGENCY CONTEXTS?

Conclusion

- Mercy Corps AgriFin leveraged its network of partners in Kenya and Ethiopia to mobilize a complementary range of technical and domain expertise to deliver a widescale, multi-channel citizen reporting effort.

- Lessons from this study imply that smallholder farmers can be instrumental in rapidly scaling ground-truthing data to build rapid, targeted and resource-efficient responses to future agricultural disasters and beyond.

- Given the pace of change and evolving contexts for applying citizen reporting, AgriFin is continuously learning and building knowledge around the application of citizen reporting in future agricultural emergency contexts that could include:
 - Pest outbreaks (e.g. fall army worm)
 - Drought
 - Floods
 - Soil damage

Leesa Shrader
Program Director | AgriFin
Ishrader@mercycorps.org

John Mundy
Emergency Response Manager | AgriFin
jomundy@mercycorps.org

Naoko Koyama
Regional Director and Partner | Dalberg
Naoko.Koyama@dalberg.com

Charlie Habershon
Senior Project Manager | Dalberg
Charlie.Habershon@dalberg.com
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Context</td>
</tr>
<tr>
<td>Citizen Reporting: Desert Locusts and Lessons Learned</td>
</tr>
<tr>
<td>Framework for Applying Citizen Reporting</td>
</tr>
<tr>
<td>Appendix</td>
</tr>
</tbody>
</table>
Broader Applications of Citizen Reporting

CITIZENS CAN BE EDUCATED AND EMPOWERED TO RESPOND IN NATURAL HAZARD MANAGEMENT AND ACROSS OTHER CONTEXTS

<table>
<thead>
<tr>
<th>Broader Application</th>
<th>Description</th>
<th>Key Learnings</th>
<th>Further reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat rust early warning system</td>
<td>Automating real-time data flows from field and mobile surveillance data, spore dispersal and environmental sustainability models of wheat rust through an Early Warning System (EWS) and cascading information to decision-makers, and small holder farmers in Ethiopia</td>
<td>Importance of strategic collaboration and proper implementation of a logistics strategy</td>
<td>Read more here</td>
</tr>
<tr>
<td>Tracking of bird migration</td>
<td>Empowering citizens to share observations on biodiversity, including birds on an interactive online mapping platform, paired with a community of scientists who share knowledge, as well as use data to assess environmental impacts on bird populations and migratory patterns</td>
<td>Community scientists can fill the gap where scientists lack adequate capacity</td>
<td>Read more here</td>
</tr>
<tr>
<td>Responding to earthquakes</td>
<td>Responding to projections by pre-mapping health facilities and developing a crisis map to support relief efforts in affected regions for response by government, non-government and volunteer groups</td>
<td>Support adaptive capacity to respond to emergency situations through pre-emptive mobilization</td>
<td>Read more here</td>
</tr>
<tr>
<td>Monitoring election activity</td>
<td>Infusing trust and transparency of election and democratic activities by aggregating reports through technology and responding with real-time information, giving citizens a voice in the process</td>
<td>Importance of timely information in rapidly evolving situations</td>
<td>Read more here</td>
</tr>
<tr>
<td>Monitoring advocacy and human rights</td>
<td>Crowdsourcing reports of human rights violations and systematically keeping a record of ground-truthing information</td>
<td>Streamline communication in moments of shared crisis and emergency</td>
<td>Read more here</td>
</tr>
<tr>
<td>Prediction in coffee yields</td>
<td>Gamifying and gathering real time data from smallholder coffee farmers, and through machine learning, generate insights to share with farmers on predictions for yields in actionable formats</td>
<td>Pending launch in January 2021</td>
<td>Read more here</td>
</tr>
</tbody>
</table>
Stakeholder Engagement

WE INTERVIEWED 32 STAKEHOLDERS WITH EXPERIENCE OF BOTH DESERT LOCUST AND BROADER CITIZEN REPORTING SYSTEMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Organization</th>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convenor</td>
<td>Mercy Corps AgriFin</td>
<td>Leesa Schrader</td>
<td>Program Director</td>
</tr>
<tr>
<td></td>
<td>John Mundy</td>
<td></td>
<td>Locust and COVID Digital Response Manager</td>
</tr>
<tr>
<td></td>
<td>Elias Nure</td>
<td></td>
<td>Ethiopia Project Management and Regional Technology Expert</td>
</tr>
<tr>
<td></td>
<td>Samuel Karanja</td>
<td></td>
<td>Agriculture Manager, Kenya</td>
</tr>
<tr>
<td>Communication Channel Provider</td>
<td>Mediaei/iShamba</td>
<td>Sophie Rottmann</td>
<td>Project Coordinator</td>
</tr>
<tr>
<td></td>
<td>Martin Aketch</td>
<td></td>
<td>Product Manager</td>
</tr>
<tr>
<td>Government</td>
<td>Agriculture Transformation Agency (ATA)</td>
<td>Habtamu Hailermarim</td>
<td>Senior Project Help Desk and Surveys Officer</td>
</tr>
<tr>
<td></td>
<td>John Mundy</td>
<td></td>
<td>Associate Professor</td>
</tr>
<tr>
<td></td>
<td>Elias Nure</td>
<td></td>
<td>Ethiopia Project Management and Regional Technology Expert</td>
</tr>
<tr>
<td></td>
<td>Samuel Karanja</td>
<td></td>
<td>Agriculture Manager, Kenya</td>
</tr>
<tr>
<td></td>
<td>Leesa Schrader</td>
<td></td>
<td>Program Director</td>
</tr>
<tr>
<td></td>
<td>John Mundy</td>
<td></td>
<td>Locust and COVID Digital Response Manager</td>
</tr>
<tr>
<td></td>
<td>Elias Nure</td>
<td></td>
<td>Ethiopia Project Management and Regional Technology Expert</td>
</tr>
<tr>
<td></td>
<td>Samuel Karanja</td>
<td></td>
<td>Agriculture Manager, Kenya</td>
</tr>
<tr>
<td>Locust Response</td>
<td>PlantVillage/ Penn State</td>
<td>Anallyse Kehs</td>
<td>Systems Design Specialist</td>
</tr>
<tr>
<td></td>
<td>Derek Morr</td>
<td></td>
<td>Executive Director</td>
</tr>
<tr>
<td></td>
<td>Fei Jiang</td>
<td></td>
<td>Postdoctoral Researchal</td>
</tr>
<tr>
<td></td>
<td>Dr David Hughes</td>
<td></td>
<td>Systems Design Specialist</td>
</tr>
<tr>
<td></td>
<td>Dr David Hughes</td>
<td></td>
<td>Executive Director</td>
</tr>
<tr>
<td>Industry Expert</td>
<td>ISF Advisors</td>
<td>Christine Ribeiro</td>
<td>Professor, Epidemiology and Modelling</td>
</tr>
<tr>
<td></td>
<td>Cambridge University</td>
<td>Chris Gilligan</td>
<td>Department of Plant Sciences</td>
</tr>
<tr>
<td></td>
<td>Producers Direct</td>
<td>Rebekah Hinton</td>
<td>Advisor</td>
</tr>
<tr>
<td></td>
<td>International Maize and Wheat Improvement Centre (CIMMYT)</td>
<td>Sarah Mackay</td>
<td>Advisor</td>
</tr>
<tr>
<td></td>
<td>Producers Direct</td>
<td>Dave Hodson</td>
<td>Senior Scientist</td>
</tr>
<tr>
<td></td>
<td>PlantVillage Dream Teams (Kenya)</td>
<td>Dr John Chelal</td>
<td>eLocust3m Country Lead</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scout Coordinator</td>
</tr>
<tr>
<td>End – Users e.g. field scouts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTACT

Leesa Shrader
Program Director
Mercy Corps AgriFin
lshrader@mercycorps.org

Connect

🌐 www.mercycorpsagrifin.org
linkedin www.linkedin.com/company/mercy-corps-agrifin
twitter @mercycorpsaфа
facebook @mercycorpsagrifin